基于准相位匹配的掺铒飞秒光纤激光器倍频特性研究

吴嘉瑞1,吕志强1,陆星1,刘关玉2,施可彬1

1北京大学人工微结构和介观物理国家重点实验室,北京 100871;

²北京大学区域光纤通信网与新型光通信系统国家重点实验室,北京 100871

摘要 研究了不同厚度周期极化铌酸锂晶体(PPLN)对掺铒飞秒光纤激光器倍频特性的影响。基于非线性偏振旋转锁模原理和啁啾脉冲放大技术,在1560 nm 波段实现了重复频率为100 MHz,输出功率为423 mW,脉冲宽度为80 fs 的掺铒飞秒光纤激光输出。以此为基频光源,对0.5,1,10 mm 三种不同厚度 PPLN 倍频晶体进行倍频特性研究,实现了波长在780 nm 的飞秒激光输出。其中采用0.5 mm 晶体时获得了功率为100.4 mW、脉冲宽度为104 fs的倍频光输出,倍频转换效率为23.7%;采用1 mm 晶体时获得了功率为165.0 mW、脉冲宽度为161 fs 的倍频输出,倍频转换效率为39%;采用10 mm 晶体时获得了功率为185.5 mW,脉冲宽度为305 fs 的倍频光输出,倍频转换效率为39%;采用10 mm 晶体时获得了功率为185.5 mW,脉冲宽度为305 fs 的倍频光输出,倍频转换效率为43.7%。并解释了倍频转换效率和倍频光脉冲宽度随 PPLN 晶体厚度的变化规律。实验数据为基于锁模光纤激光器产生780 nm 波段飞秒光脉冲的研究提供了有益的参考。

关键词 激光器;掺铒飞秒光纤激光器;啁啾脉冲放大器;非线性偏振旋转锁模;倍频;周期极化铌酸锂晶体
 中图分类号 O437
 文献标识码 A
 doi: 10.3788/CJL201845.0701001

Characteristics of Second Harmonic Generation in Erbium Doped Femtosecond Fiber Lasers Based on Quasi Phase Matching

Wu Jiarui¹, Lü Zhiqiang¹, Lu Xing¹, Liu Guanyu², Shi Kebin¹

¹State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China; ²State Key Laboratory of Advanced Optical Communication System and Networks of Peking University,

Beijing 100871, China

Abstract The second harmonic generation (SHG) characteristics of erbium doped femtosecond fiber lasers with different thicknesses of periodically poled lithium niobate crystals (PPLNs) are studied. Based on nonlinear polarization rotation mode locking and chirped pulse amplification, an erbium doped femtosecond fiber laser output with repetition rate of 100 MHz, output power of 423 mW, and pulse width of 80 femto-second (fs) is achieved at 1560 nm. Then we obtain 780 nm femtosecond lasers through SHG with three different PPLN crystals respectively. The thicknesses of PPLN crystals are 0.5, 1 and 10 mm. For 0.5 mm crystal, the SHG pulses with 104 fs width, 100.4 mW output power and 23.7% energy conversion efficiency can be obtained. For 1 mm crystal, the SHG pulses with 161 fs width, 165.0 mW output power and 39% energy conversion efficiency can be obtained. For 1 0 mm crystal, the SHG pulses with 305 fs width, 185.5 mW output power and 43.7% energy conversion efficiency can be obtained. In addition, we explain how do energy conversion efficiency and pulse width of SHG pulses change with thickness of PPLN crystals. The experimental data provide a useful reference for the research of femtosecond optical pulses generated by mode-locked fiber laser at 780 nm band.

Key words lasers; erbium doped femtosecond fiber laser; chirped pulse amplifier; nonlinear polarization rotation mode locking; second harmonic generation; PPLN crystal

OCIS codes 320.1590; 320.5520; 320.7090; 320.7140

收稿日期: 2017-11-27; 收到修改稿日期: 2018-01-30

基金项目: 国家自然科学基金(91750203)

作者简介:吴嘉瑞(1993-),男,硕士研究生,主要从事超快非线性光学、飞秒光纤激光器方面的研究。

E-mail: wujiarui@pku.edu.cn

导师简介:施可彬(1976—),男,博士,研究员,博士生导师,主要从事超快非线性光谱/成像技术、非线性光纤光学方面的研究。E-mail: kebinshi@pku.edu.cn(通信联系人)

1 引 言

近年来波长在 800 nm 附近的飞秒激光在多光 子成像^[1-2]、太赫兹光谱学^[3]、相干拉曼光谱显微 镜^[4]、激光微加工^[5]等多个领域有非常重要的应用。 尽管固体激光器如钛宝石激光器在这些领域的应用 仍有重要地位^[6-7],但超短脉冲飞秒光纤激光器由于 其具有体积小、成本低、稳定性好^[8-10]等特点而越来 越表现出其强大的竞争力。基于光纤激光器产生波 长为 800 nm 的超短脉冲的常用方法是通过对掺铒 激光器中心波长为 1550 nm 的输出脉冲进行倍频 来实现的。

光学倍频过程中,基频光和倍频光由于波矢失 配会导致两者在晶体中传播速度不同,从而会降低 倍频转换效率,近20年来一种比较可靠的解决技术 是准相位匹配(QPM)技术^[11]。经 QPM技术处理 后,晶体内的铁电畴会发生周期性反转现象,因此利 用晶体铁电畴周期反转产生的倒格矢去补偿失配的 波矢,可以达到提高倍频转换效率的目的。当铁电 畴周期性反转产生的倒格矢正好补偿失配的波矢 时,称为满足准相位匹配条件。理论上一种长度的 极化周期只能补偿一种波长的基频光和倍频光的波 矢失配,而飞秒脉冲光谱一般具有较大的谱宽(10~ 20 nm),使用传统周期极化进行倍频的效率偏低。

为了提高远离基频光光谱中心波长成分的倍频 转换效率,可采用啁啾周期极化晶体进行倍频^[12]。 啁啾周期极化晶体是在周期极化晶体基础上,在光 传输方向上堆叠不同极化周期的晶体获得。基频光 脉冲在不同频率上均能实现近似 QPM 条件,故利 用基频光脉冲可提高整体的倍频转换效率。尽管如 此,啁啾周期极化晶体倍频转换效率随谱宽的增加 仍呈下降趋势,因此要求输入的高功率基频光脉冲 的光谱宽度在工作带宽内。

光纤中的群速色散和非线性效应,可用于调控 高功率光脉冲在光纤中传播时的光谱演化。高功率 的基频光脉冲在光纤中传播时会产生较强的非线性 效应^[13],其中自相位调制(SPM)效应会产生正啁 啾,导致脉冲频谱展宽。为应对 SPM 效应产生的 不利影响,须合理地利用负色散光纤[$\beta_2 = d^2 k/((d\omega^2) < 0, k)$ 为波数, ω 为光的角频率, β 为 k 对 ω 求二阶导得到的群速色散(GVD)]固有的群速色散 补偿 SPM 效应。负色散光纤中低频光相速度慢, 高频光相速度快,与 SPM 效应相反。利用一定长 度的负色散光纤进行色散补偿是抵消 SPM 效应带 来的频谱展宽的有效方法之一。此外,过高的峰值 功率会使时域脉冲在负色散光纤中传播时发生孤子 分裂^[14]。近年来,啁啾脉冲放大技术逐渐成为解决 该问题的可靠办法^[15]。该技术通过在放大前对脉 冲进行色散补偿以增加脉宽,降低了在光纤放大过 程中的峰值功率。脉冲放大后,再耦合到空间光路 中进行脉宽压缩,避免了在光纤中产生过高的峰值 功率。

另一个影响倍频转换效率及倍频后光脉冲宽度 的重要因素是倍频晶体的厚度^[16]。对于采用准相 位匹配技术的晶体,适当增加晶体厚度会增加基频 光与倍频介质的相互作用距离,提高倍频转换效 率^[17-19]。但准相位匹配技术是依靠铁电畴的极化方 向周期性反转产生的光学超晶格的倒格矢去补偿基 频光和倍频光的波矢失配。一个极化周期对应着一 个中心波长。虽然采用啁啾周期极化晶体可以提高 工作光谱宽度,但典型基频光飞秒脉冲的光谱宽度 通常是几十纳米,这将导致远离中心波长的成分得 不到有效的波矢失配补偿,光谱边缘倍频转换效率 明显降低。这将导致光谱在倍频过程中窄化,随着 晶体增厚,光谱窄化现象更明显。同时,光谱窄化也 会进一步导致脉冲宽度增加。

在近似 QPM 条件下,更厚的晶体一般可以带 来更高的倍频转换效率,但同时也会带来更严重的 光谱窄化效应,也会因傅里叶变换极限导致倍频光 脉冲宽度变宽。针对这个问题,本工作使用自行搭 建的重复频率为100 MHz、输出功率为423 mW、脉 宽为80 fs 的掺铒飞秒光纤激光器,并基于周期铌酸 锂晶体(PPLN)开展了倍频特性的研究。分别使用 2 种不同厚度的非啁啾 PPLN 晶体和1 种啁啾 PPLN 晶体进行实验,分析了不同厚度的倍频晶体 对倍频光脉宽以及倍频光功率的影响。

2 实验装置及基本原理

实验装置如图 1 所示,主要由谐振腔、脉冲啁啾 放大系统、倍频系统构成。谐振腔采用非线性偏振 旋转锁模原理^[20]。当线性偏振光通过具有双折射 效应的光纤时,偏振态通常会变为椭圆偏振态,而偏 振态方向和椭偏度由光纤长度和双折射共同决定。 短脉冲在光纤中传播时,光克尔效应会使输出光的 偏振态产生额外的偏振旋转,这就意味着不同光强 的输入光可以通过输出光的偏振态区分出来。用 1/2 波片与 1/4 波片调整腔内脉冲的偏振状态,用 偏振隔离器(ISO₁)增大光强低的脉冲边缘的能量

WDM: wavelength division multiplexing; f_1, f_2 : lens; BS: beam splitter; PBS: polarization beam splitter; ISO: isolator; PPLN: periodically poled lithium niobate

图 1 实验装置示意图

Fig. 1 Schematic of the experimental device

损耗,使光强高的部分在脉冲中心通过,从而使脉冲 变窄,达到锁模的目的。

谐振腔内脉冲通过偏振分束器(PBS)分离后再 耦合到准直器 1 中进行下一步放大。光纤部分包括 一段 300 mm 的掺铒单模光纤(型号为 Liekki110-4/125),群速色散为 β =+12 fs²/mm;一段长度为 220 mm 的单模光纤(SMF-28e),群速色散为 β = -22 fs²/mm;一段长度为 1440 mm 的 OFS980 单 模光纤,群速色散为 β =+4.5 fs²/mm;整个腔的净 色散为+5240 fs²。

谐振腔脉冲从腔内输出后先通过一个 90:10 的 分束器分束,分束器10%功率的输出端用于检测谐 振腔的锁模状态,90%功率的输出端用于后续放大。 光纤型隔离器(ISO₂)用于阻挡主放大过程中可能 产生的回光,保护谐振腔正常工作。脉冲首先经过 一段长度为 2000 mm 的单模光纤(SMF-28e),使脉 冲展宽并引入一定量的负色散。脉冲紧接着进入一 段掺铒光纤进行主放大。放大部分的抽运源为2个 输出功率为 1.2 W、中心波长为 976 nm 的半导体激 光器,分别从前后两端对掺铒增益光纤进行抽运。 用于放大部分的掺铒光纤型号为 Likkie80-4/125, 长度为 2.4 m,群速色散为 $\beta = +33$ fs²/mm。放大 之后的光束通过准直器 2 耦合到空间光路,光纤型 隔离器(ISO₃)用于阻挡后续光路中可能的回光,避 免回光影响主放大部分正常工作。为了压缩放大后 的脉冲宽度,使脉冲以布儒斯特角为入射角入射到 顶角为32.15°的硅制三棱镜上,用一对棱镜压缩脉 宽。棱镜对之前的 1/2 波片和 1/4 波片用于调整脉 冲的偏振状态,使脉冲以 P 偏振光入射到棱镜上。 脉冲在压缩之后通过焦距 f=30 cm 的红外增透透 镜 1 聚焦在周期极化铌酸锂晶体上进行倍频。透镜 f_1 前的 1/2 波片用于调整脉冲偏振方向为最大化 倍频功率。倍频之后脉冲通过中心波长为780 nm 的带通滤波器滤掉基频光成分,经过焦距f = 50 cm 透镜 2 准直输出。

3 实验结果与分析

谐振腔产生的脉冲输出功率为 88 mW,中心波 长为 1550 nm,重复频率为 100 MHz。谐振腔产生 的脉冲的光谱图像和自相关图像如图 2 所示。光谱 的半峰全宽(FHWM)约为 80 nm,自相关的半峰全 宽为 125 fs。谐振腔中脉冲并没有经过压缩,预留 一些色散是为了补偿后续放大过程中的非线性 效应。

脉冲随后通过一段 2.4 m 长的掺铒光纤进行放 大,放大之后脉冲输出功率为 523 mW,脉冲自相关 的半峰全宽为 140 fs,如图 3 所示。

放大压缩后脉冲的光谱图像如图 3(a)所示。 脉冲在放大过程中积累了比较大的色散,致使自相 关曲线呈现上凸状态,如图 3(b)所示。图 3(c)表示 在准直器 2 之后用光斑轮廓仪测得的光束质量 M² 的曲线,内部图为测得的光斑形貌。光斑轮廓仪测 得脉冲的束腰半径在水平方向为 565.5 μm、在竖直 方向为 517.7 μm。脉冲质量 M²在水平方向为 1.040、在竖直方向为 1.006。放大后的脉冲随后进 入棱镜对进行脉宽压缩,如图 3(d)所示。压缩之后 输出脉冲的功率为 423 mW,自相关半峰全宽为 137 fs。经过色散补偿后自相关曲线上凸状态消 失。如果以高斯脉冲做近似处理,在除以反卷积因 子 1.7之后,脉宽为80 fs。压缩后的脉冲已十分接近

Fig. 2 (a) Optical spectrum and (b) autocorrelation image of erbium doped pulse oscillators

傅里叶变换极限的脉冲。

为探究不同厚度下倍频晶体对倍频效率的影响,在功率为 423 mW,脉宽为 80 fs 的基频光入射下,利用 0.5 mm 非啁啾 PPLN 晶体、1 mm 非啁啾 PPLN 晶体、10 mm 啁啾 PPLN 晶体分别实现倍频。其中 0.5、1 mm 非啁啾 PPLN 晶体的极化周期为 19.7 μ m,10 mm 啁啾 PPLN 晶体的极化周期为 19.8~20.2 μ m。啁啾与非啁啾晶体的极化周期不同也使倍频后的中心波长不同。通过仔细调节倍频 晶体的位置以及基频光的入射方向,3 种不同厚度 的倍频晶体均实现了较高的倍频效率。

利用 0.5 mm 非啁啾 PPLN 晶体获得了 100.4 mW功率的倍频光,其倍频转换效率为 23.7%,脉冲宽度为 104 fs;利用 1 mm 非啁啾 PPLN晶体获得了165.0 mW功率的倍频光,其倍 频转换效率为 39%,脉冲宽度为 161 fs;利用10 mm 啁啾 PPLN 晶体获得了 185.5 mW 功率的倍频光, 其倍频转换效率为 43.7%,脉冲宽度为 305 fs。不 同厚度 PPLN 晶体对 780~1560 nm 的倍频效率影 响如表 1 所示。不同厚度 PPLN 晶体对应的自相 关图像如图 4 所示,图 4(c)中脉冲由于经过了比较 长的晶体,积累了比较多的色散导致脉冲峰值功率 较低,因此自相关峰值较低。

对照表1数据发现,随着倍频晶体厚度的增加, 倍频效率和脉冲宽度也均随之增加。对于没有作周 期极化处理的晶体,单一频率光的倍频转换效率的 公式可以写为^[21]

$$\eta = \frac{8\omega^2 d_{\text{eff}}^2 L^2}{\varepsilon_0 c^3 n_2 n_1^2} \frac{P}{S} \operatorname{sinc}^2 \left(\frac{\Delta k L}{2}\right), \qquad (1)$$

中 国 激 光

Power of Power of Pulse width Thickness Power of amplified Power of amplified Energy Style of seed secondof secondof PPLN pulse before pulse after conversion PPLN pulse / harmonic harmonic d / mmcompression /mW compression /mW efficiency / % mWpulse /mW pulse /fs Un-chirped 0.5 23.7 104 88.2 523 424100.4 Un-chirped 1 88.2 523 423 165.0 39.0 161 Chirped 10 88.2 523 185.5 43.7 305 4240.8 0.60.8(a) (b) (c) 0.7

表 1 不同厚度 PPLN 晶体对 780~1560 nm 过程倍频效果的影响

图 4 不同厚度 PPLN 晶体的自相关图像。(a) 0.5 mm 非啁啾 PPLN 晶体;

(b) 1 mm 非啁啾 PPLN 晶体;(c) 10 mm 啁啾 PPLN 晶体

Fig. 4 Autocorrelation images of PPLN crystals with different thicknesses. (a) 0.5 mm un-chirped PPLN crystal;(b) 1 mm un-chirped PPLN crystal; (c) 10 mm chirped PPLN crystal

式中:*P* 为基频光功率;*S* 为有效光束横截面积;*L* 为晶体长度; $d_{\text{eff}} = \frac{1}{2} \chi_{\text{eff}}^2, \chi_{\text{eff}}$ 为倍频晶体的非线性 极化系数; ω 为基频光圆频率; n_1 和 n_2 分别为晶体 对基频光和倍频光的折射率; $\Delta k = k_2(2\omega) - 2k_1(\omega)$ 为波矢失配; ε_0 为介电常数;c 为真空光速。

在基频光功率维持不变的情况下,倍频转换效 率公式可以简化为

$$\eta = C \cdot L^2 \operatorname{sinc}^2\left(\frac{\Delta kL}{2}\right), \qquad (2)$$

式中:C为常数。

倍频晶体经过周期极化后形成倒格矢可以有效 地补偿波矢失配 Δk。采用准相位匹配技术后,倍频 晶体中总的波矢失配 Δk 会非常小,在这种条件下, 毫米级厚度的晶体中倍频效率主要受到 L² 的调 制。因此晶体厚度 L 越大,倍频转换效率越高。

另一方面,基频光的光谱宽度达到 20 nm 时, 准相位匹配只能弥补其中一个波段附近的波矢失 配。因此越远离中心波长的基频光,波矢失配 Δk 就越大。

远离中心波长的基频光的波矢失配 Δk 所带来的影响因子 sinc² $\left(\frac{\Delta kL}{2}\right)$ 就会使倍频效率随着晶体长度 L 的增加而显著变小。对于更厚的晶体,远离中心波长的基频光的倍频转换效率更低,这就意味

着更厚的晶体会导致倍频光谱更窄。可采用实验测 量倍频光的光谱来验证这个想法。图 5 为由不同厚 度的倍频晶体得到的倍频光光谱。实验显示倍频光 的光谱宽度随着倍频晶体厚度的增加而降低,这与 理论结果一致。图 5 中啁啾 PPLN 晶体的倍频光 光谱的中心波长为 787 nm,是因为基频光主要能量 集中在 1570~1575 nm,图 3(a)显示基频光在 1573 nm波长附近有显著峰值。图 5 中非啁啾的 PPLN 晶体的倍频光光谱的中心波长为 780 nm,这 是因为非啁啾 PPLN 晶体的极化周期是按照基频 光波长为 1560 nm 设计的。

如图 5 所示,厚度为 0.5 mm 的非啁啾 PPLN 晶体的光谱半峰全宽为 10.5 nm,厚度为 1 mm 的

非啁啾 PPLN 晶体的光谱半峰全宽为 6.4 nm,厚度 为 10 mm 的啁啾 PPLN 晶体的光谱半峰全宽为 2.6 nm。脉冲宽度 Δτ 和频谱的半峰全宽 Δν 是傅 里叶变换对,它们的乘积-时间带宽积在确定的波形 下是一个常数,公式为

$$\mathrm{d}\nu = \frac{-c}{\lambda^2} \mathrm{d}\lambda \,. \tag{3}$$

根据公式换算得到的频谱的半峰全宽如表 2 所示。通过 PPLN 晶体产生的倍频光的频谱宽度 $\Delta \nu$ 会随着晶体厚度的增加而变窄。若以高斯脉冲拟合,理论上脉冲的时间带宽积为 0.441。由于时间带宽积的限制,计算得到的脉冲宽度 $\Delta \tau_1$ 会随着频谱宽度变窄而变宽。这与实验测得的脉冲宽度 $\Delta \tau_2$ 变化趋势相符合。

表 2 不同厚度晶体倍频光的光谱宽度、 频谱宽度和脉冲宽度的对比

 Table 2
 Comparison of spectrum bandwidth, frequency bandwidth and pulse width with different

thicknesses PPLNs

	Value		
Parameter	Un-chirped	Un-chirped	Chirped
	d = 0.5 mm	d = 1 mm	d = 10 mm
Spectrum bandwidth	10.5	6.4	2.6
$\Delta\lambda$ /nm			
Frequency bandwidth	5.174	3.154	1.259
$\Delta \nu$ /(10 ¹² Hz)			
Pulse width by Gaussian	n 85.2	140	350
fitting $\Delta \tau_1$ /fs			
Pulse width by	104	161	305
experiment $\Delta \tau_2$ /fs			

4 结 论

实验采用非线性偏振旋转锁模原理搭建了掺铒 光纤激光谐振腔,经过正反双向功率为1.2 W 的半 导体激光器放大后得到了功率为420 mW,脉冲宽 度为80 fs,重复频率为100 MHz 的脉冲。利用这 束脉冲作为基频光,分别入射到3种不同厚度的 PPLN倍频晶体进行倍频特性研究。用0.5 mm 和 1 mm 厚度的非啁啾 PPLN 晶体分别得到了脉宽为 104 fs、功率为100.4 mW 的倍频光和脉宽为161 fs、 功率为165.0 mW 的倍频光。用10 mm 厚度的啁 啾 PPLN 晶体得到了脉宽为305 fs,功率为 185.5 mW的倍频光。可以得到以下两方面结论:随 着晶体变厚,满足准相位匹配波段的基频光的倍频 转换效率提高;随着晶体变厚,偏离中心波段的波矢 失配会迅速变大,因此倍频光光谱会随晶体变厚而 变窄。另外,因为时间带宽积的限制,窄的光谱会导致更宽的脉宽。因此用厚度大的晶体得到的倍频光的功率高,但是脉宽也更宽。实验数据为基于锁模光纤激光器产生 780 nm 波段飞秒光脉冲的研究提供了有益的参考。

参考文献

- Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.
- Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences
 [J]. Nature Biotechnology, 2003, 21 (11): 1369-1377.
- [3] Roskos H G, Thomson M D, Kreß M, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications[J]. Laser & Photonics Review, 2007, 1 (4): 349-368.
- [4] Lefrancois S, Fu D, Holtom G R, et al. Fiber fourwave mixing source for coherent anti-stokes Raman scattering microscopy[J]. Optics Letters, 2012, 37 (10): 1652-1654.
- [5] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for threedimensional optical data storage and microfabrication
 [J]. Nature, 1999, 398(4): 51-54.
- Yamakawa K, Aoyama M, Matsuoka S, et al. 100-TW sub-20-fs Ti: sapphire laser system operating at a 10-Hz repetition rate[J]. Optics Letters, 1998, 23 (18): 1468-1470.
- [7] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser
 [J]. Optics Letters, 1991, 16(1): 42-44.
- [8] Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked allfiber ring laser [J]. Optics Letters, 1993, 18(13): 1080-1082.
- [9] Fermann M E, Hartl I. Ultrafast fibre lasers [J]. Nature Photonics, 2013, 7(11): 868-874.
- [10] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
- [11] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1997, 278(5339): 843-846.
- [12] Bostani A, Ahlawat M, Tehranchi A, et al. Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic

generation[J]. Optics Express, 2015, 23(4): 5183-5189.

- [13] Nelson L E, Fleischer S B, Lenz G, et al. Efficient frequency doubling of a femtosecond fiber laser [J].
 Optics Letters, 1996, 21(21): 1759-1761.
- [14] Tauser F, Leitenstorfer A, Zinth W. Amplified femtosecond pulses from an Er : fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution[J]. Optics Express, 2003, 11(6): 594-600.
- [15] Pavlov I, Ilbey E, Dülgergil E, et al. High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system [J]. Optics Express, 2012, 20(9): 9471-9475.
- [16] Arbore M A, Fejer M M, Fermann M E, et al. Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate[J]. Optics Letters, 1997, 22(1): 13-15.
- [17] Yang S, Huang X J, Wu Z H, et al. Broadband frequency doubling of Er-fiber mode-locked laser in BBO crystal[J]. Laser & Optoelectronics Progress,

2015, 52(12): 121901.

- Zhang Z Y, Zhu G S, Wang W, et al. Difference frequency generation wildly tunable continuous wave mid-infrared radiation laser source based on a MgO: PPLN crystal [J]. Acta Photonica Sinica, 2016, 45 (9): 0914003.
- [19] Chang J H, Yang Z B, Lu Z, et al. A novel multi-wavelength mid-infrared difference frequency generation laser source based on PPLN[J]. Chinese Journal of Lasers, 2013, 40(10): 1002009.
 常建华,杨镇博,陆洲,等.一种新型的基于 PPLN 的多波长中红外激光光源[J].中国激光, 2013, 40 (10): 1002009.
- [20] Feng X, Tam H Y, Wai P K. Stable and uniform multi-wavelength erbium-doped fiber laser using nonlinear polarization rotation [J]. Optics Express, 2006, 14(18): 8205-8210.
- [21] Fejer M M, Magel G A, Jundt D H, et al. Quasiphase-matched second harmonic generation: tuning and tolerances [J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2631-2654.